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We demonstrate that a chiral particle-hole condensate is always induced by a number-conserving ground
state of nonzero angular momentum in the presence of a magnetic field. The magnetic interaction originates
from the coupling with the intrinsic orbital moment of the chiral state when the field is applied perpendicularly
to the plane. According to our numerical results, the induction mechanism is practically temperature indepen-
dent, providing robustness to these states up to high temperatures. This opens the door for manipulating the
anomalous Hall response resulting from this intricate class of states for technological applications while it also
suggests that chiral particle-hole condensates may be hidden in various complex materials.
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Among the numerous states that emerge in a strongly cor-
related system in the particle-hole channel, the chiral states
are given particular attention. These states, apart from the
related symmetry breaking they effect due to the correspond-
ing pair condensation, they additionally violate parity and
time-reversal because of their special momentum structure
�See, e.g., Ref. 1�. As a consequence, the condensate carries
an orbital moment that can be viewed as the effect of a
nonzero Berry curvature in k space.2–4 The arising orbital
moment5 provides the system with a magnetic field coupling
leading to anomalous Hall transport and enhanced diamag-
netic response. As a matter of fact, such states have ideal
properties for technological applications. In addition, the
well-established belief that unconventional particle-hole con-
densates are hidden in the majority of several important ma-
terials renders these states as candidates for a group of uni-
dentified phases. Consequently, it is of high priority to be in
position to generate these states and manipulate them at our
own disposal.

One of the traditional ways to controllably engineer states
of matter is via applying an external field. Typical examples
of field-induced states in the area of particle-hole conden-
sates constitute the field-induced charge and spin density
waves. There are several kinds of field-induced density
waves, such as those occurring in organic quasi-one-
dimensional conductors6 or even confined spin density
waves7 that are both generated due to the orbital coupling
with the magnetic field. Nevertheless, one may also obtain
induced density waves driven by the Zeeman coupling.8

In this Brief Report, we perform a numerical study of the
magnetic-field-induced planar chiral particle-hole conden-
sates. A similar situation was addressed by Laughlin9 in the
context of chiral d-wave superconductors to explain the
magnetic-field-induced transition observed in
Bi2Sr2CaCu2O8, and later extended to the particle-hole chan-
nel by Zhu and Balatsky.10 Since the whole class of these
chiral states are characterized by a universal behavior, we
shall concentrate on a particular state belonging to this class,
the chiral d-density wave state that recently attracted atten-
tion due to its role in explaining the pseudogap regime of the
cuprates.11–16 By taking into account the effect of an external
perpendicular magnetic field through its coupling with the
intrinsic orbital magnetic moment of this state, we demon-
strate through a detailed numerical analysis that a chiral state

is necessarily induced or it is strongly enhanced if it already
exists. In addition, we extract the magnetic field dependence
of the two density wave order parameters, which is different
in the above two cases. However, the interplay of the under-
lying interaction and the field strength can lead to a cross-
over in the magnetic field dependence in the latter case. Fur-
thermore, we observe that the chiral d-density wave is robust
against the increase in temperature in the presence of the
external magnetic field, a direct consequence of the field
driven enhancement. Our results demonstrate that in many
materials in which possibly only some components of a chi-
ral particle-hole condensate develop, there will be unavoid-
ably an induction of the rest and a concomitant transition to
the complete chiral state in the presence of an external field,
giving rise to the aforementioned response.

As we have already mentioned, the representative chiral
particle-hole condensate that we shall consider is the chiral
d-density wave state that constitutes a singlet unconventional
density wave with a planar momentum structure, character-
ized by the commensurate wave-vector Q= �� /a ,� /a�. It is
composed by a real dxy charge density wave violating parity
and an imaginary dx2−y2 orbital antiferromagnetic state, giv-
ing rise to local charge currents and zero charge density,
violating time reversal. This state has been shown to exhibit
unconventional Hall transport and anomalous magnetic re-
sponse, which is common to any other chiral particle-hole
condensate with zero17 or finite momentum taking place ei-
ther in the singlet or triplet channel of some kind of a spin
degree of freedom that is characterized by the same Berry
curvature.

First of all, the chiral d-density wave is known to give rise
to the spontaneous quantum Hall effect,12,18 which concerns
the generation of a quantized Hall voltage via the sole appli-
cation of an electric field. Quite similarly, a thermoelectric
Hall effect can be reproduced by the application of a finite
temperature gradient.14 Moreover, this state supports topo-
logical spin transport characterized by dissipationless spin
currents in the presence of a Zeeman field gradient.15 An
unconventional behavior also dominates the magnetic re-
sponse of this system. The existence of the intrinsic orbital
magnetic moment leads to perfect diamagnetism and conse-
quently to the topological Meissner effect demonstrated in
Ref. 13. In the half-filled case, the topological Meissner ef-
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fect is identical to the usual superconducting diamagnetism,
and motivated by this feature, the chiral d-density wave state
has been proposed to be hidden in the pseudogap phase of
the cuprates. Furthermore, the observed Polar Kerr effect in
YBa2Cu3O6+x �Ref. 19� has been considered as a sharp sig-
nature of the chiral d-density wave state in underdoped
cuprates.11

To model the chiral d-density wave state, we consider the
following Hamiltonian:

H = �
k

���k�ck
†ck + ��k + Q�ck+Q

† ck+Q�

−
1

v �
k,k�

V�k,k��ck
†ck+Qck�+Q

† ck�, �1�

where we have introduced the single band energy dispersion
of the free Bloch electrons ��k�=−2t�cos�kxa�+cos�kya��
arising from the nearest neighbors hopping term and a four-
fermion interaction driven by an effective separable potential
V�k ,k��=V1f1�k�f1�k��+V2f2�k�f2�k��, projecting only onto
the form factors f1=sin�kxa�sin�kya� and f2=cos�kxa�
−cos�kya� of the dxy and dx2−y2 momentum space orbitals.
The operators ck /ck

† annihilate/create an electron of momen-
tum k in the reduced Brillouin zone �RBZ�, v is the volume
of the system and a the square lattice constant. For conve-
nience, we have omitted the spin indices, as we are dealing
with a spin singlet state. Within a mean field decoupling, we
obtain the order parameter of the chiral d-density wave state
��k�=�1 sin�kxa�sin�kya�− i�2�cos�kxa�−cos�kya��, which
satisfies the self-consistence equation

��k� = −
1

v�
k�

V�k,k���ck�
† ck�+Q	 , �2�

with � 	 denoting thermal and quantum-mechanical average.
For convenience, we adopt a more compact notation by con-
sidering the enlarged spinor �k

†= �ck
†ck+Q

† � and employing the
� Pauli matrices. The mean field Hamiltonian now becomes
H=�k�k

†H�k��k=�k�k
†g�k� ·��k, where we have intro-

duced the isovector g�k� defined as g�k�= �Re��k� ,
−Im��k� ,��k��. The one-particle Hamiltonian for each k
mode is a 2�2 matrix

H�k� = 
 g3�k� g1�k� − ig2�k�
g1�k� + ig2�k� − g3�k�

� . �3�

To incorporate the interaction with the magnetic field, we
shall consider only the orbital coupling and neglect the Zee-
man term as it is usually negligible in the case we are con-
sidering. To calculate the orbital moment, one has to deter-
mine the Berry phase emerging in this chiral state when k
changes adiabatically along a closed loop. For instance, the
variation of k can be enforced by the minimal coupling k
→k−e�t if we apply a constant electric field �. In this case,
the Hamiltonian becomes parametric H�k�→H�k , t�. Within
the adiabatic approximation, the emerging Berry phase can
be determined using the instantaneous �adiabatic� eigenstates
of the parametric Hamiltonian ����k , t�, satisfying
H�k , t�����k , t�	=E��k , t�����k , t�	. In this equation, t is

introduced only as a parameter. This means that these adia-
batic eigenstates are not really time-dependent, but only pa-
rameter dependent, which in our case coincides with t. Our
two band system is characterized by the adiabatic eigenstates
��		 and the corresponding eigenenergies E	�k , t�
= 	 �g�k , t��. By defining g1�k�=E�k�sin 
�k�cos ��k�, g2�k�
=E�k�sin 
�k�sin ��k�, and g3�k�=E�k�cos 
�k�, we obtain a
convenient expression for the adiabatic eigenstates of the
system

��+�k,t�	 = 
cos
�k,t�
2

�,sin
�k,t�
2

�ei��k,t��T

,

��−�k,t�	 = 
sin
�k,t�
2

�,− cos
�k,t�
2

�ei��k,t��T

, �4�

with E�k�= �g�k�� and T denoting matrix transposition. The
orbital magnetic moment m��k� is determined by the relation

m��k� = e
2�i ��k���k����H�k� − E��k����k���k�	

= e�
� E�k����k� ,

where we have introduced the Berry curvature15

���k� = −
�

2E3�k�
g�k� · 
 �g�k�

�kx
�

�g�k�
�ky

� = �
z ẑ . �5�

We notice that the Berry curvature and the orbital moment lie
along the z axis as a direct consequence of the planar char-
acter of our system. The presence of a perpendicular mag-
netic field ℬ enters the band dispersions of the system in the
following way E�

ℬ�k�=E��k�−m��k� ·ℬ.
Having obtained the energy dispersions of the system in

presence of the magnetic field, we may now extract the self-
consistence equations of the dxy and dx2−y2 order parameters
�1 ,�2. The free energy functional is defined as5

F =
�1

2

V1
+

�2
2

V2
−

1

v�
�

k,�=	

Ln�1 + e−�E�
ℬ�k�� , �6�

with �=1 /kBT. The first two terms in the free energy origi-
nate from the mean field decoupling and correspond to the
elastic energy waisted for building up the two density wave
gaps. Minimization of this functional with respect to the or-
der parameter doublet leads to the following system of
coupled self-consistence equations:

�F
��i

= 0 ⇒ �i

=
2

v�
k,�
�− Vi�i

f i
2�k�

2E�k�
�

+
ea2t

�
BzVi�̃i

s�k�
E2�k�1 – 2
�i�k�

E�k�
�2��nF�E�

ℬ�k�� ,

i = 1,2, �7�

that will be used for determining the chiral d-density wave
gaps numerically. In the above, we have introduced s�k�
=sin2�kxa�cos2�kya�+sin2�kya�, �̃1,2=�2,1, nF�E� the Fermi-
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Dirac distribution and multiplied by a factor of two in order
to take into account the electron spin. The first term corre-
sponds to the equation that we obtain in a zero magnetic field
with the only difference being that of the energy bands E� are
shifted by the orbital coupling −m� ·ℬ. On the other hand, the
second term is attributed entirely to the magnetic field inter-
action with the chiral d-density wave state. As a matter of
fact, it is the essential ingredient for a field-induced chiral
d-density wave. To understand how a magnetic field stabi-
lizes this chiral state, we consider the case of �1=0 and �2
�0. In this case, the initial state is an orbital antiferromag-
net. We may calculate the induced �1 component by setting
�1=0 on the right hand side of Eq. �7�. It is straightforward
to obtain that �1

induced= ea2t
� BzV2�2I�Bz� with I�Bz� corre-

sponding to a suitable sum over RBZ of the remaining terms.
Apart from the additional weak dependence on the field in I,
this formula also agrees with the one derived in Ref. 10
using a different method. According to our result, a chiral
d-density wave state is always generated even for an arbi-
trary small magnetic field.

We now proceed in solving numerically the system of
self-consistence equations. For all our numerical simulations,
we set t=250 meV, a=5 Å, and V2=150 meV. The last
condition aims to establish a dx2−y2 density wave of approxi-
mately a �2�53 meV gap for all the possible temperatures
and magnetic fields considered here. The latter consideration
helps us to focus solely on the behavior of the dxy compo-
nent. For the calculations, we have set up a 128�128 grid in
the right upper quadrant of the Brillouin zone. A large num-
ber of points are needed in order to stabilize a value for the
dxy order parameter.

First of all, we verify numerically the linear dependence
on the magnetic field of the induced dxy order parameter. For
the illustration, we consider V1=125 meV, a value that, in
zero magnetic field, would provide a practically zero dxy gap.
In the inset of Fig. 1, we do observe the expected linear
scaling, while we also notice the extremely weak tempera-
ture dependence. The latter is attributed to the manner in
which the Fermi-Dirac occupation numbers enter the second
part of the self-consistence equations. Specifically, the occu-
pation numbers of the two bands add up, giving nF�−E�k�
−mz�k�Bz�+nF�E�k�−mz�k�Bz��1 due to the negligibleness
of the magnetic coupling compared to E�k�.

More interesting results emerge in the case of an initially
existing chiral d-density wave state. We consider the combi-
nation of potentials V1=550 meV and V2=150 meV, gener-
ating the gaps �1�1.8 meV and �2�53 meV in the ab-
sence of the field. When the orbital magnetic coupling is
switched on, the dx2−y2 gap remains mostly unaffected while
the dxy component is significantly enhanced. Specifically, the
magnitude of the gap becomes about 15 times bigger for
Bz=50 T. Moreover, we observe that the magnetic field de-
pendence of the latter gap turns out to be square root con-
trary to the linear dependence obtained earlier. Of course,
this difference arises from the first term of the self-
consistence equation, which dominates the zero field limit
and is fully active here, compared to the previous situation.

As far as the temperature dependence is concerned, we
notice in the main panel of Fig. 1, that for two totally differ-
ent temperature regimes, we only have a shift in the two

curves, equal to the difference of the dxy gap value obtained
in these temperatures in the absence of the field. Apparently,
the induced part of the dxy gap is once again temperature
independent as it originates solely from the magnetic field
coupling term. We also obtain the temperature evolution for
different magnetic field values. For example, a �1
=1.8 meV gap initially disappearing at about 30 K is now
robust over a temperature range of more than 120 K. This is
natural if we take into account that the magnetic field has
strengthened the zero temperature gap of the order parameter
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FIG. 2. �Color online� Magnetic field dependence of the induced
part of the dxy component in a pre-existing chiral d-density wave
state for several interaction potentials. For small values of the po-
tential, we obtain the expected square root behavior, while after a
critical value, a crossover to a linear dependence is triggered. The
latter signals the dominance of the magnetic field coupling over the
zero field four-fermion dxy-channel interaction strength. �For the
calculations, we have used V2=150 meV.�
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FIG. 1. �Color online� Magnetic-field-induced chiral d-density
wave. In the inset, we present the magnetic field dependence of the
induced dxy component when only a dx2−y2 already exists for two
different temperatures. In the main panel, we demonstrate the
strengthening due to the field of an initially subdominant dxy com-
ponent of a pre-existing chiral d-density wave state. The two curves
presented for the dxy part differ only on the zero field gap value
arising from the usual Bardeen-Cooper-Schrieffer temperature de-
pendence. As we may observe, the induced part of the chiral state is
always temperature insensitive, while the field dependence changes
from linear to square root.

BRIEF REPORTS PHYSICAL REVIEW B 80, 212401 �2009�

212401-3



that would now collapse to a higher temperature following
the usual Bardeen-Cooper-Schrieffer behavior.

Finally, we examine the influence of the dxy interaction
potential, on the corresponding gap magnetic field depen-
dence. Figure 2 shows the field dependence of the dxy gaps
for several potentials after subtracting the zero field contri-
bution. Focusing on the induced part of the gap, we conclude
that the increase in the interaction strength softens the square
root field dependence, turning it into a linear one. This cross-
over behavior is indicative of the enhancement of the mag-
netic field coupling that favors a linear trend. As a matter of
fact, this feature serves as a potential diagnostic method for
the interaction energy scale.

In conclusion, we have studied numerically the occur-
rence of magnetic-field-induced chiral particle-hole conden-
sates due to the coupling of their intrinsic orbital moment to
a perpendicular magnetic field. According to our results, if an
incomplete chiral state develops in zero field, such as a dx2−y2

density wave, then a dxy is generated spontaneously when the
magnetic interaction is triggered. The magnetic field depen-
dence of the dxy gap is linear. On the other hand, if a small
dxy compared to the dx2−y2 already exists, then it will have a
square root dependence on the magnetic field that can be-

come linear if the interaction potential in the dxy channel
exceeds a critical value. In both cases, we obtain a negligible
dependence of the induced order parameters on temperature.
Consequently, chiral particle-hole condensates can survive
up to high temperatures as long as the magnetic coupling
persists.

The unavoidable transition to a chiral state has strong im-
pact on materials that are proposed to host orbital antiferro-
magnetic states. For instance, the well-established d-density
wave scenario20 in the pseudogap regime of the cuprates pro-
vides a unique occasion for the realization of a chiral state,
the chiral d-density wave. In this case, its presence is ensured
when an external perpendicular field is applied, but it could
also be present in zero field if the necessary orbital interac-
tion originates from intrinsic sources such as magnetic im-
purities.
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